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We present a computational scheme based on classical molecular dynamics to study chaotic billiards in static
external magnetic fields. The method allows us to treat arbitrary geometries and several interacting particles.
We test the scheme for rectangular single-particle billiards in magnetic fields and find a sequence of regularity
islands at integer aspect ratios. In the case of two Coulomb-interacting particles the dynamics is dominated by
chaotic behavior. However, signatures of quasiperiodicity can be identified at weak interactions, as well as
regular trajectories at strong magnetic fields. Our scheme provides a promising tool to monitor the classical
limit of many-electron semiconductor nanostructures and transport systems up to high magnetic fields.
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I. INTRODUCTION

Classical and quantum billiard systems �1,2� are of sig-
nificant interest both in nonlinear physics and in applications
based on low-dimensional nanostructures �3�. For example,
quasi-two-dimensional �quasi-2D� quantum dots �4� are stud-
ied in view of emerging applications in the field of quantum
computation �5�. They exhibit deterministic ballistic motion
of the electrons as “billiard balls” and provide the possibility
to tune their shape, size, and electron number. A particularly
intriguing feature is the connection between classical dynam-
ics and the statistical properties of the corresponding quan-
tum system �6,7�. For systems with mixed chaotic and regu-
lar dynamics, the Berry-Robnik formula �8� links the volume
ratio of regular and chaotic regions in classical phase space
to the quantum-mechanical level distribution �9,10�.

External magnetic fields pose, on the one hand, an inter-
esting complication to classical �and quantum� billiards �11�,
and, on the other hand, provide an easily accessible way to
experimentally control the particle dynamics. Recently, mag-
netic fields have been used to manipulate electron transport
in coupled electron billiards �12�. In many cases, e.g., in
rectangular �13–16� or triangular �17� billiards, an external
magnetic field leads to mixed dynamics between regularity
and chaoticity. The breaking of time-reversal symmetry due
to the presence of a magnetic field results in new properties
of the level spacing statistics of the corresponding quantum
system �18,19�.

In contrast to freely tunable parameters, such as external
magnetic and electric fields, interactions between particles
are inevitably present in any realistic physical system. While
single-particle billiards have been studied thoroughly for
many years now, billiards of interacting particles are still a
relatively young field. Classical billiards for two interacting
particles have been studied using various models, e.g.,
Coulomb-like interactions in a one-dimensional box �20� and
in an isotropic �21� and anisotropic harmonic oscillator �22�,
as well as applying hard-sphere contact interaction in a rect-
angular �23� and a mushroom-shaped box �24�. The statisti-

cal mechanics of such systems has also been extensively
studied recently �25�. Quantum mechanically, interaction-
induced chaos has been studied in a two-electron quantum
dot �21,22,26�, and, very recently, also in the framework of
time-dependent density-functional theory �27,28�—an ap-
proach that might enable examination of quantum chaos in
systems containing a large number of interacting particles.

Single-particle billiards have traditionally been studied by
either reducing the dynamics of the system to a bouncing
map �for magnetic single-particle billiards, see, e.g., �29�� or
by investigating the infinitesimal variations in the trajectories
using the method of Jacobi fields �30,31�. In an interacting
billiard, however, the trajectory of a particle between succes-
sive bounces is not known in advance, as its motion is
coupled to the motion of all other particles. The locations of
the bounces at the wall are not given by simple geometric
considerations anymore, and thus the methods used to study
single-particle systems do not carry over in a straightforward
way.

In this paper, we present a classical molecular dynamics
scheme that allows to calculate the trajectories of interacting
particles in an arbitrary 2D billiard system exposed to a uni-
form and perpendicular magnetic field. To demonstrate the
method, we focus on single- and two-particle dynamics in
rectangular billiards. In the single-particle case, we present
an efficient method to systematically obtain “regular” and
“chaotic” regions in phase space, which allows us to monitor
the combined effect of the magnetic field and the rectangle
shape. We find a pattern of increased regularity at integer
aspect ratios. In the two-particle case mostly chaotic behav-
ior is found, but also regular orbits at high magnetic fields.
The relevance of the method in studying the classical limit of
collective effects in many-electron structures is discussed.

II. METHOD

A. Propagation of particles

To calculate the trajectories of charged particles, we use a
modified velocity Verlet algorithm suited for incorporating
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arbitrarily strong static homogeneous external magnetic
fields �32�. With a magnetic field B= �0,0 ,B� pointing in the
z direction, the acceleration of a charged particle reads

a�t� = aC�t� − �ez � v�t� , �1�

where aC�t� is the velocity-independent part of the accelera-
tion depending only on external forces, and �=qB /m is the
cyclotron frequency for a particle with charge q and mass m.
We use Hartree atomic units throughout the paper such that
�=e=me=1 / �4��0�=1 and the velocity of light has the
value c�137.036. Furthermore, the factor 1 /c in the Lorentz
force law is absorbed into B such that we have �=B for
electrons. Within the modified velocity Verlet algorithm pre-
sented in Ref. �32�, each particle is propagated using the
following equations:

rx�t + �t� = rx�t� +
1

�
�vx�t�sin���t� − vy�t��cos���t� − 1��

+
1

�2 �− ax
C�t��cos���t� − 1� − ay

C�t��sin���t�

− ��t�� + O���t�3� , �2�

ry�t + �t� = ry�t� −
1

�
�− vy�t�sin���t� − vx�t��cos���t� − 1��

+
1

�2 �− ay
C�t��cos���t� − 1� − ax

C�t��− sin���t�

+ ��t�� + O���t�3� , �3�

aC�t + �t� = aC�r1�t + �t�, . . . ,rN�t + �t�;t + �t� , �4�

vx�t + �t� = vx�t�cos���t� + vy�t�sin���t� +
1

�
�− ay

C�t�

��cos���t� − 1� + ax
C�t�sin���t��

+
1

�2�−
ax

C�t + �t� − ax
C�t�

�t
�cos���t� − 1�

−
ay

C�t + �t� − ay
C�t�

�t
�sin���t� − ��t�	

+ O���t�3� , �5�

vy�t + �t� = vy�t�cos���t� − vx�t�sin���t� −
1

�
�− ax

C�t�

��cos���t� − 1� − ay
C�t�sin���t��

+
1

�2�−
ay

C�t + �t� − ay
C�t�

�t
�cos���t� − 1�

−
ax

C�t + �t� − ax
C�t�

�t
�− sin���t� + ��t�	

+ O���t�3� . �6�

B. Phase-space maps for single-particle billiards

In a single-particle billiard system, the kinetic energy, and
consequently also the velocity v= �vx

2+vy
2�1/2 of the particle,

is a constant of motion. The dynamics of the billiard is de-
termined by the boundary conditions �see below� and the
relative strength of the magnetic field. The latter quantity is
here given by a parameter

� = Rc/Lx, �7�

where Rc=v /B is the cyclotron radius and Lx is the length of
one side of the system �here a rectangle�. The constant of
motion can be used to reduce the four-dimensional phase
space �x ,y ,vx ,vy� to a three-dimensional �3D� one, where we
have chosen the space spanned by �x ,y ,vx�. To identify regu-
lar and chaotic regions in this phase space, we use the fol-
lowing procedure:

�1� We choose a 2D cross section �x ,vx� through the 3D
phase space and divide it into a number of cells.

�2� For one cell, we pick two phase-space points in the
cell that are very close to each other but not identical up to
the numerical precision.

�3� We follow the trajectories through these two points for
a certain propagation distance stot using Eqs. �2�–�6� and
record all cells in the cross section through which they pass.

�4� After having propagated for a distance stot, we calcu-
late the distance between the points in phase space, which is
a measure of the “regularity” of the trajectory. We save this
distance to all cells we have passed. If a cell has already been
passed by a previous run, we take the maximum of the dis-
tances.

�5� We start over from point �2� by picking another cell
that has not yet been traversed by a trajectory and repeat the
whole process until all cells have been hit by a trajectory at
least once.

�6� We then plot the distances stored in the cells of our 2D
cross section as a color-coded “matrix plot.” In the follow-
ing, these plots will be called “phase-space maps.” Small
numbers correspond to “regular” phase-space cells and large
numbers to “chaotic” cells �see below for details�.

The algorithm can be efficiently parallelized, because tra-
jectories originating from different cells can be propagated
independent of each other. Our code uses the message pass-
ing interface �MPI� and a master/slave paradigm. The master
process keeps track of the phase-space map and distributes
free cells, i.e., cells that have not yet been hit by any trajec-
tory, to the workers. The workers perform the propagation of
the trajectories and communicate the traversed cells and the
phase-space distance after the propagation distance stot back
to the server.

III. RESULTS

A. Single particle

We demonstrate our computational scheme by consider-
ing rectangular billiards with side lengths Lx=1 �fixed� and
Ly =	Lx �varied�, where 	 is the aspect ratio. The strength of
the external magnetic field has been fixed to B=1, so that the
cyclotron radius Rc=v /B is determined by varying the veloc-
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ity of the particle. In the single-particle case, we focus on the
dynamics of the system as a function of 	 and �=Rc /Lx. In
both of the limits �→0 and �→
 the motion is regular, the
former corresponding to infinitely many circular orbits �cf.
Landau-level condensation in confined quantum systems�
and the latter corresponding to linear motion at zero field,
which is always regular in rectangular billiards. At 0��
�
 the dynamics is generally mixed except at particular
values of � when the system is completely chaotic �13�.

Figure 1�a� shows an example of a phase-space map cal-
culated for the parameters 	=2 and �=0.6. The scheme de-
scribed in Sec. II B has been used to calculate the figure. The
cross section through the phase space has been partitioned
into 150 cells in each direction �x and vx�. The color scale
indicates the phase-space distance � after propagating the
trajectories by a distance of stot=60Lx.

We find distinct areas of regularity associated with
Kolmogorov-Arnold-Moser islands �KAM� �1�. Figure 1�b�
shows the phase-space distances of all cells sorted in ascend-
ing order. The sharp onset of the curve indicates a distinct
separation between regular and chaotic motion. To consis-
tently determine this separation, we choose a threshold of
�=0.1 shown in the figure as a dashed line. Thereby, this
particular system is regular by a fraction of 25%. We pre-
sume that by using a very high resolution it should be pos-
sible to determine and categorize phase-space cells corre-
sponding to weak chaos �33�. This topic is, however, beyond
the scope of this work and left for future research.

In Fig. 2 we show the proportions of regularity, estimated
as shown in the example in Fig. 1, for square �	=1� billiards
as a function of �. We find excellent agreement with the
result of Berglund and Kunz �13� that has been calculated
using an exact method. This confirms the accuracy of the
proposed scheme up to strongly curvilinear motion, i.e.,
small values of �. Hence, we expect the method to be reli-
able also in more complicated systems with many particles
and/or different boundaries.

To assess the effect of the billiard shape onto the dynam-
ics, we have calculated the proportions of regularity as a
function of both � and the aspect ratio 	. The result is shown
in Fig. 3 for 0.3�	�3.2 in steps of 0.1 and for 0.2��
�2 in steps of 0.01. Figure 3 required the calculation of

5430 phase-space maps, each consisting of 22 500 cells,
thereby demonstrating the numerical efficiency of the
scheme. Note that Fig. 3 is not symmetric around 	=1, be-
cause we have varied Ly =	 and thus the system area is not
kept constant.

We find several islands of increased regularity centered at
	=n /2 with n=1,2 ,3 , . . .. Overall, the “most regular” case
is the square billiard �	=1� as expected. A more detailed
analysis of the regularity patterns and their connections to
the periodic orbits will be performed elsewhere.

B. Two particles

We now turn to the dynamics of two particles interacting
via Coulomb repulsion in a square well �	=1�. Now the
velocities �and thus also the cyclotron radii� are no longer
constants of motion. The phase space is eight dimensional,
and instead of the phase-space map described in Sec. II B,
we calculate so-called bouncing maps by recording the val-
ues �x ,vx� corresponding to the bounces of one of the par-
ticles on the lower boundary �y=0� of the system.

We investigate the dynamics with different values for the
ratio
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FIG. 1. �Color online� �a� Phase-space map for a rectangular
billiard with aspect ratio 	=2. The color map indicates the phase-
space distance � between two orbits having a small initial pertur-
bation. Dark colors correspond to regular motion, light colors to
chaotic motion. �b� Ordered phase-space distances for all the cells
plotted in �a�. The dashed line shows the threshold ��=0.1� be-
tween chaotic and regular motions.
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FIG. 2. Proportions of regularity in square billiards as a function
of �=Rc /Lx, i.e., the ratio between the cyclotron radius and the side
length.
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FIG. 3. �Color online� Proportions of regularity in rectangular
billiards as a function of � and the aspect ratio 	.
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� =
Ek�t = 0�
Ep�t = 0�

�8�

for the initial configuration, where Ep= 
r−r�
−1 /2 is the
Coulomb potential energy and Ek=v2 /2 is the kinetic energy.
The quantity � essentially determines how “strongly interact-
ing” the system is, as it fixes the average ratio of Ek�t� and
Ep�t� for the full time-dependent system through the initial
energy components. In physical applications this ratio could
be varied by changing either the particle density or the sys-
tem size. A well-known example of the limit where the po-
tential energy dominates is the Wigner crystal �34� forming
in the electron gas at low densities.

In the following examples we have fixed the initial posi-
tions of the particles to �x1 ,y1�= �2 /5,3 /10� and �x2 ,y2�
= �7 /10,7 /10�. The initial Coulomb energy in this case is
Ep�t=0�=2. After fixing � in Eq. �8�, the initial kinetic en-
ergy Ek�t=0� is distributed equally to both particles, and the
initial velocities v1=v2= �0,�Ek� point in the y direction. The
initial configuration is visualized in Fig. 4.

The remaining parameter to be fixed is ��t=0� defined in
Eq. �7�. Note that again we fix only the initial condition, and
in the time-dependent run, the values of � for both particles
vary due to changes in the velocities. Since the initial veloc-
ity is determined through �, we fix ��t=0� through B in
contrast with the single-particle case where we always had
B=1.

First, we set �=30 and the magnetic field to zero ��
→
� and propagate sufficiently long to obtain a bouncing
map with a large number of points. Figure 5 shows the tra-
jectories of the particles up to t=5 �upper panel� and the
bouncing map up to t=3�104 �lower panel�. The number of
bounces is �7.8�105. Apart from a few exceptions, the par-
ticles remain separated in the left and right parts of the sys-
tem due to the Coulomb repulsion. However, as the interac-
tion is relatively weak, both particles move in the y direction,
almost undisturbed from their initial conditions. Close to the
left and right boundaries, where the interaction is weakest,
the dynamics is most regular. This can be seen in the trajec-
tories, which are almost straight lines in that regime. In ad-
dition, the bouncing map shows regular curvilinear albeit

blurry zones �see the inset in the lower panel of Fig. 5�.
These features may be designated as quasiregular motion in
the system �33�.

In the following example we keep the magnetic field at
zero but increase the relative amount of interaction energy
such that �=1 /30. The trajectories and bouncing map are
shown in Fig. 6. Here, the dynamics is very different from
the weakly interacting case. Both particles occupy the whole
area of the system, but due to their strong repulsion, the
corners are considerably more occupied than the central re-
gion, which is characterized by “scattering” trajectories of
high curvature. The bouncing map in the lower panel is com-
pletely chaotic. Increasing the interaction even further would
enable to study classical Wigner crystallization �34� in a dy-
namic picture. In the present system, for example, the
Wigner crystal would consist of two diagonal configurations
summed up to a four-point crystal.

Finally, we consider two systems with �=2, where the
magnetic field is set to values corresponding to ��t=0�
=1 /4 and ��t=0�=1 /32, respectively. The trajectories are
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FIG. 4. �Color online� Initial configuration of the calculations
for two Coulomb-interacting particles in square billiards subjected
to a perpendicular magnetic field.

0 0.5 1
0

0.5

1

x

y
v x

E = 30 Epk

0 10.5

1

−1

0

x

FIG. 5. �Color online� Upper panel: classical trajectories for two
relatively weakly interacting particles indicated by blue �dark gray�
and red �light gray� colors in square billiards. The magnetic field is
zero. Lower panel: bouncing map for the particle with the blue
�black� trajectory in the upper panel.
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plotted in Fig. 7. In the first case �a� the system seems to be
fully chaotic, whereas the latter configuration �b� leads to
regular isolated orbits forming a ringlike structure. In this
case, the “interaction axis” �i.e., the dashed line in Fig. 4�
performs a circular motion that is superimposed by strongly
confined cyclotron motions at the opposite ends of the axis.
The characteristics of this motion are further illustrated in the
inset of Fig. 7�b�, which shows the trajectories soon after the
beginning of the time propagation. The—at a first glance—
counterintuitive result that a repulsive interaction leads to
bound motion can be understood by considering the com-
bined effect of Coulomb repulsion and the strong magnetic
confinement through the cyclotron motion. When the par-
ticles increase their relative distance, the gain in kinetic en-
ergy �at the expense of Coulomb energy� results in an in-
creased radius of the cyclotron motion. The different
curvature of the trajectory on the different sides of the
“circle” gives rise to a bent cycloidal motion which can, for
the right choice of the parameters, lead to a bound motion as
depicted in Fig. 7�b�.

The above results on the classical dynamics in magnetic
fields suggest to study the relation to the corresponding
quantum-mechanical situation in semiconductor quantum
dots. In fact, interesting vortex patterns and edge localization
have been found in rectangular many-electron quantum dots

at high magnetic fields �35�. Such patterns may exist—in a
statistical picture—also in a classical system. A particularly
interesting case would be the quantum-mechanical analog of
the bound motion shown in Fig. 7�b�. Moreover, our scheme
would allow to study the effects of interactions on the clas-
sical limit of electron transport in billiard arrays �12�.

IV. SUMMARY

We have introduced a computational scheme based on
molecular dynamics to study classical billiards of interacting
particles in external magnetic fields. The accuracy and effi-
ciency of the method have been demonstrated in rectangular
billiards. We have found excellent agreement with numeri-
cally exact method in single-particle square billiards as a
function of the magnetic field. Changing the aspect ratio 	 of
the rectangle leads to islands of increased regularity at 	
=n /2 with n=1,2 ,3 , . . .. In square billiards of two interact-
ing particles we have found signatures of quasiperiodic or-
bits at weak interactions and localization at strong interac-
tions. Large magnetic fields may lead to regular patterns also
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FIG. 6. �Color online� Same as Fig. 5 but for relatively strongly
interacting particles.
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FIG. 7. �Color online� Classical trajectories for two interacting
particles at two different magnetic fields corresponding to �=1 /4
and �=1 /32, respectively.
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for interacting particles. The scheme opens up the path to
study the classical limit of realistic many-particle systems
related with, e.g., electronic transport experiments in mesos-
copic structures.
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